Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Simulation of HC-Emissions from SI-Engines - A Parametric Study

1997-10-01
972893
Earlier modelling of SI engine HC-emissions indicated that the absorption/desorption of fuel HC in the oil film played a rather important role for the engine-out HC-emissions. However, recent experimental results seem to indicate that this mechanism does not play a major role. Therefore, we updated a previous model in order to obtain a better understanding of the absorption/desorption phenomenon. The upgraded absorption/desorption model has been combined with the MIT ring/liner lubrication model and applied to a single cylinder engine with known lubrication characteristics. The calculations have been carried out for steady-state and warm-up conditions. Compared to earlier results we found that due to an essentially smaller oil film thickness calculated by the lubrication model the absorption/desorption process exhibits a much faster response than previously estimated.
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

1997-02-24
970986
The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
Technical Paper

Conventional Event Based Engine Control

1994-03-01
940377
Many existing production engine controllers use event (or constant crank angle increment) based sampling and computation systems. Because the engine events are synchronized to the internal physical processes of an engine, it is widely accepted that this is the most logical approach to engine control. It is the purpose of this paper to deal with this assumption in detail and to illuminate various failures of it in practical systems. The approach of the paper is in terms of overall general control system design. That is to say that the problem of event based engine control is considered as a general control problem with its standard components: 1. modelling (engine plus actuator/sensor), 2. specification of desired performance goals, 3. control system design method selection and 4. experimental testing.
Technical Paper

Nonlinear, Closed Loop, SI Engine Control Observers

1992-02-01
920237
Conventional electronic engine control systems suffer from poor transient air/fuel ratio control accuracy. This is true of speed-throttle, speed-density, and mass air flow (MAF) control systems with either single point (or central) or port fuel injection. The reason for this is that they fail to 1. compensate for the nonlinear dynamics of the fuel film in the intake manifold or in the vicinity of the intake valves. 2. estimate correctly the air mass flow at the location of the injector(s). This paper presents a nonlinear fuel film compensation network and a nonlinear closed loop observer. The nonlinear fuel film compensator gives improved global cancellation of the fuel film dynamics, while the closed loop observer has improved robustness with respect to modelling error and measurement noise. The closed loop observer is based on a modified constant gain extended Kalman filter.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

Diesel Engine Flame Photographs With High Pressure Injection

1988-02-01
880298
The effect of high pressure injection (using an accumulator type unit injector with peak injection pressure of approximately 20,000 psi, having a decreasing injection rate profile) on combustion was studied. Combustion results were obtained using a DDA Series 3–53 diesel engine with both conventional analysis techniques and high speed photography. Diesel No. 2 fuel and a low viscosity - high volatility fuel, similar to gasoline were used in the study. Results were compared against baseline data obtained with standard injectors. Some of the characteristics of high pressure injection used with Diesel No. 2 fuel include: substantially improved ignition, shorter ignition delay, and higher pressure rise. Under heavy load - high speed conditions, greater smokemeter readings were achieved with the high pressure injection system with Diesel No. 2 fuel. Higher flame speeds and hence, greater resistance to knock were observed with the high volatility low cetane fuel.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

The Effects of a Porous Ceramic Particulate Trap on the Physical, Chemical and Biological Character of Diesel Particulate Emissions

1983-02-01
830457
Physical, chemical, and biological characterization data for the particulate emissions from a Caterpillar 3208 diesel engine with and without Corning porous ceramic particulate traps are presented. Measurements made at EPA modes 3,4,5,9,lO and 11 include total hydrocarbon, oxides of nitrogen and total particulate matter emissions including the solid fraction (SOL), soluble organic fraction (SOF) and sulfate fraction (SO4), Chemical character was defined by fractionation of the SOF while biological character was defined by analysis of Ames Salmonella/ microsome bioassay data. The trap produced a wide range of total particulate reduction efficiencies (0-97%) depending on the character of the particulate. The chemical character of the SOF was significantly changed through the trap as was the biological character. The mutagenic specific activity of the SOF was generally increased through the trap but this was offset by a decrease in SOF mass emissions.
Technical Paper

A Model and the Methodology for Determining Wear Particle Generation Rate and Filter Efficiency in a Diesel Engine Using Ferrography

1982-02-01
821195
Monitoring of the wear rate of a diesel engine will yield valuable information regarding the wear mechanism within a diesel engine and ultimately will improve the predictions of failing engines and/or their components to allow preventive maintenance which will prolong the life of the engine. A mathematical model was developed that describes the wear particle concentration as a function of time in a diesel engine. This model contains engine and lubrication system parameters that determine the concentration of wear particles in the engine sump. These variables are the oil system volume, oil flow rate, particle generation rate, filtering efficiency and the initial particle concentration. The model has been employed to study the wear particle concentrations in the sump and the mass of particles in the filter for the Cummins VT-903 diesel engine.
Technical Paper

The Effect of Oil and Coolant Temperatures on Diesel Engine Wear

1977-02-01
770086
A study has been made of piston ring wear and total engine wear using literature data and new experimental results. The main purpose of the study was to establish the effects of oil and coolant temperatures on engine wear. Wear trends that were found in the early 1960's may not be valid any longer because of the development of higher BMEP turbocharged diesel engines, better metallurgical wear surfaces and improved lube oil properties. New data are presented for the purpose of describing present wear trends. A direct-injection, 4-cycle, turbocharged diesel engine was used for the wear tests. The radioactive tracer technique was used to measure the top piston ring chrome face wear. Atomic emission spectroscopy was employed to determine the concentration of wear metals in the oil to determine total engine wear based on iron and lead. The data were analyzed and compared to the results found in the literature from previous investigators.
Technical Paper

A Study of the Effect of Oil and Coolant Temperatures on Diesel Engine Brake Specific Fuel Consumption

1977-02-01
770313
Diesel engine fuel consumption is mainly a function of engine component design and power requirements. However, fuel consumption can also be affected by the environment in which the engine operates. This paper considers two controlling parameters of the engine's thermal environment, oil temperature and coolant temperature. The effects of oil and coolant temperatures on Brake Specific Fuel Consumption (BSFC) are established for a turbocharged diesel engine. Data are also presented for a direct injection, naturally aspirated diesel engine. A matrix of test conditions was run on a Cummins VT-903 diesel engine to evaluate the effects of oil and coolant temperatures on BSFC for several loads and speeds. Loads and speeds were selected based on where a typical semi-tractor engine would operate over the road on a hills and curves route. Oil temperature was monitored and controlled between the oil cooler and the engine. Coolant temperature was monitored and controlled at the engine outlet.
Technical Paper

Emissions and Fuel Usage by the U. S. Truck and Bus Population and Strategies for Achieving Reductions

1974-02-01
740537
This paper presents an approach to modeling the United States truck and bus population. A detailed model is developed that utilizes domestic factory sales figures combined with a scrappage factor as a building block for the total population. Comparison with historical data for 1958-1970 shows that the model follows trends well for intermediate parameters such as total vehicle miles per year, total fuel consumption, scrappage, etc. Fuel consumption and HC, CO, NO2, CO2 and particulate matter emissions for gasoline and diesel engines are of primary interest. The model details these parameters for the time span 1958-2000 in one-year increments. For HC and CO, truck and bus emissions could equal or exceed automobile emissions in the early 1980s, depending on the degree of control. Three population control strategies are analyzed to determine their effects on reducing fuel consumption or air pollution in later years.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

1973-02-01
730633
Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
X